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Free-Vibration Analysis of Rotating Beams
by a Variable-Order Finite-Element Method

Dewey H. Hodges* and Michael J. Rutkowskit

U. S. Army Research and Technology Laboratories (A VRA DCOM) ,

Ames Research Center, Moffett Field, Calif.

The free vibration of rotating beams is analyzed by means of a finite-element method of variable order. This
method entails displacement functions that are a complete power series of a variable number of terms. The terms
are arranged so that the generalized coordinates are composed of displacements and slopes at the element ex-
tremities and, additionally, displacements at certain points within the element. The displacement is assumed to
be analytic within an element and thus can be approximated to any degree of accuracy desired by a complete
power series. Numerical results are presented for uniform beams with zero and nonzero hub radii, tapered
beams, and a nonuniform beam with discontinuities. Since the present method reduces to a conventional beam
finite-element method for a cubic displacement function, the results are compared and found to be superior to
the conventional results in terms of accuracy for a given number of degrees of freedom. Indeed, essentially exact

elgeuvalues and eigenvectors are obtained with this technique, which is far more rapidly convergent than other
approaches in the literature.

Introduction

OTATING beams, which have importance in many
practical applications such as turbine blades, airplane

propellers, and helicopter rotor blades, have been studied by
numerous investigators who used a variety of methods, t-_9
The problem of determining free vibration, response, and

stability characteristics of nonuniform, pretwisted, rotating
beams is too complex to solve exactly, especially when

flapwise and chordwise bending and torsion are considered.
Thus, most of the various studies found in the literature have

been concerned with obtaining approximate solutions to
simplified special cases of the free-vibration problem. It is
necessary, however, to remember that the methods one uses to

analyze the simplified free-vibration problems should be

developed with the more complex problems in mind. Thus,
such features as reduced computational or programming
effort, reduced numbers of degrees of freedom, increased
accuracy, and, above all, ability to incorporate nonlinear,

nonconservative effects should all be considered important.
It is also important to identify a set of standard problems

that can be solved as accurately as possible to provide
developers of future, more general analyses with a data base
by which to judge their results. Therefore, the literature was

examined to see if some standard problems have already been
identified and solved.

DiscUssionofPreviousWork

The investigatorsexamined in the literatureconsidered

varioussimplifiedforms of the rotatingbeam free-vibratlon

problem and obtained solutionsfor beams with a varietyof

geometriesand properties.Among the many methods used to
solve various simplifiedforms of the rotatingbeam free-
vibration problem are the Southwell principle,t the in-
tegratingmatrix method, 2.3the transfermatrix method, 4 the

Myklestad method,S the Runge-Kutta method,6 a

semianalyticapproach based on the Frobenius method, _ two
modal methods using Legendre polynomials,s,9 a mixed
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variational method, l° a conventional Rayleigh-Ritz
method,_.H several forms of the finite-element method, a2-t7

and an exact solution for some simple configurations. _s

Results presented in these papers were studied carefully with
the primary purpose of comparison with results from the
present analysis, which is based on a variable-order finite-

element method. We will now cite some samples of what was
found in the literature.

Lung and Nemat-Nasser_° used the method of the new

quotient based on a mixed variational principle to analyze the

vibration characteristics of a nonuniform blade. This blade,
which is hinged at the root, was previously studied by
Wadsworth and Wilde _ using Runge-Kutta methods.

Numerical results presented in Refs. 6 and 10, while in good
agreement, are not identical, the more significant differences
being in the moment distribution. Exact numerical results

obtained from use of the present analysis for eigenvalues and

eigenvectors, not presented herein, are virtually identical to
those in Ref. 6.

Hoa _ has recently presented a finite-element analysis for
rotating beams with a tip mass. This analysis is based on a
third-order-polynomial displacement function but is restricted

to equal-length elements with constant mass and stiffness
properties. There is, however, as the published comment _
indicates, a sign error in the middle term of the elements of

the centrifugal stiffness matrix in Ref. 16. which leads to

eigenvalues that are too high. Except for this error, Ref. 16 is
a very clear and straightforward presentation of a simplified
finite-element analysis for rotating beams. The only results

presented in Refs. 16 and 20 were for uniform beams.
Unfortunately, in the course of the study it was found that

several of these references presented a few results which were
at best of questionable worth. A finite-element analysis based

on a cubic polynomial-displacement function has also been
made by Murty and Murthy =J for tapered and pretwisted
rotor blades. When the present finite-element method is
reduced to third order, virtually identical eigenvalue results

(not presented herein) are obtained for various taper ratios at
zero rotor speed. Unfortunately, this agreement holds only

for zero rotor speed. All of the results presented in Ref. 13 for
a rotating beam are in error and for all except the lowest rotor
speeds the error is substantial. In fact, even the results of a

Galerkin solution which are presented by Murty and Murthy
for comparison are significantly better than the results of their

finite-element solution. It is obvious that something is amiss

since the tabulated results attempting to show the convergence
trend in Ref. 13 do not converge monotonically from above
for the cases with rotation.
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This problem is also evident for some of the plotted results
presented in Ref. 14. The solutions in Refs. 13 and 14 that

should always be upper bounds are not for some cases.
Furthermore, whereas the results obtained by using the
present variable-order finite element will be shown to con-

verge from above very rapidly to the exact eigensolutions as
the order of the element and/or the number of elements is

increased, the same cannot be said for some of the other

referenced analyses."B'9 In Ref. 4, the transfer matrix method
is used to obtain upper and lower bound solutions for a

uniform rotating beam. To obtain identical upper and lower
bounds to seven figures for the first beam natural frequency,
600 constant-tension element segments are needed. Un-

fortunately, the converged results with 600 elements are less
accurate than the integrating matrix results for the same

beam, also presented in Ref. 4, which more closely agree with
exact results obtained by using the present analysis. In Refs. 8

and 9, the displacement is expanded in even 8 or odd 9
Legendre polynomials. The covergence, for reasons explained
below, can be relatively slow in such cases.

In Ref. 17, a simple power series was used to express the

displacement in each element. Essentially exact frequencies
and mode shapes were obtained. The resulting mode shapes
could be differentiated four times and substituted into the

differential equation and satisfy it to any accuracy desired.
The numerical results presented in Ref. 17 are for a
nonuniform beam with discontinuous stiffness and mass

distributions and are exactly the same as those obtained in the
present approach for all cases.

In Ref. 18 the exact solutions for uniform and tapered
rotating beams were obtained in the form of infinite series,

and numerical results identical to those obtained by using the
present method are presented for several configurations. The

exact solution calculated in Ref. 18 does not apply to general
nonuniform beams with discontinuities, as in Ref. 17 and in
the present analysis, however. A more complete data base is

therefore envisioned for the present paper to include essen-

tially exact solutions for both uniform, tapered, and
nonuniform beams with discontinuities.

Present Approach

it is evident that results presented in the literature fall short
of a desirable data base in several areas. It is therefore one

purpose of this paper to tabulate accurate results for a few
simplified problems, including both frequencies and mode

shapes for some cases. A second purpose is to present the
details of deriving the variable-order finite-element for-
mulation (in particular the shape function) to facilitate its use

by other investigators. In the present paper, the method of
Ref. 17 is modified to a true finite-element form so that

generalized coordinates are actual displacements and slopes at
various points on the element. This method, of course, yields
identical results. This variable-order finite-element analysis is
applied herein to the problem of finding the free-vibration

frequencies of rotating beams, some of which possess
nonuniform properties. The method described in this paper
can also readily be extended to incorporate coupled bending,

torsion, and extension with geometric nonlinearity and
nonconservative loading. In Ref. 19, a Galerkin finite-element
method is applied to a more general nonconservative,

nonlinear problem. The present method, when applied to that
problem, will yield equivalent results when the same shape
functions are used. We note that the shape functions in the
present analysis, when they are taken to the third order,

reduce to the conventional cubic shape functions, such as
found in Refs. 19and 21.

We proceed by first deriving the finite-element equations
from the principle of virtual work. Then, tabulated results of

nondimensional eigenvalues as a function of nondimensional

rotation speed are presented for three representative rotating
cantilever beam examples: a uniform beam, a uniform beam

with nonzero hub radius, and a tapered beam. Mode shapes

TOP VIEW END VIEW
Fig. 1 Geometry of the kth beam element; 0, the angle of the plane in
which bending occurs, is the same for nil elements.

are also presented for the uniform beam. These examples are
chosen as standard problems partly because some of them
have already been solved exactly, nS In addition, frequencies

and mode shapes are also presented for the nonuniform
discontinuous beam in Ref. 17. Finally, the excellent con-

vergence obtained by using the present variable-order finite
element is compared with that of a conventional finite element

based on a cubic polynomial-displacement function. It should
be noted that, although all of the results presented in this
paper are for cantilevered beams, eigenvalues and eigen-

vectors for beams with other end conditions are also readily
attainable. _v

Derivation of the Eigenvalue Problem

Principle of Virtual Work

We consider a beam element, rotating at constant angular

speed fl about an axis fixed in space, undergoing bending
motion described by w in a plane fixed in a reference system
rotating with the beam (Fig. 1). The beam is assumed to be
inextensional and the plane in which the beam is bending
makes an angle 0 with the angular velocity vector. For 0 = 0

the motion is purely out of plane (flapping) and for 0=1r/2

the motion is purely inplane (lead-lag). The principle of
virtual work for the/cth beam element is derived in Ref. 17
and is given by

(1)

where E1 k is the distributed bending stiffness, T k the
distributed tension force, and m, the distributed mass per unit
length. The subscript k refers to the _h element numbered

from the inboard end to the blade tip. Each element root is a

distance Xk from the center of rotation and the element length

coordinate x goes from zero at the root of the element to t k at
the tip. The eigenvalue is a)2 where 52 = _2 + 9_sin_0 and _ is

the natural frequency. The tension force in the kth element is

T, =92 I_* m,(x , + x)dx + T,, t ( O) (2)

where TM(IM) = 0 and M is the number of elements. Thus, for

any given beam geometric, mass, and stiffness properties, the
eigenvalues _2 will be functions of 9.

Now we define dimensionless parameters

El, m k T k

"Y*" "_r ' e,,, . .,--7" T,. m,9,t-----9'x=e,,7,

d Xk tk w k
( )'--- ..'?,--_--. i,- " (3)d,l,' Z' "* = Z-

m,CotL' x2.m,fi2L _ Xk.,_r_k_k .._kd/-_k_k1_t m -- rm --
El, ' El, ' x_ + L Yc_+ l

where El, and m, are reference values of bending stiffness

and mass per unit length and L the total blade length. The
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principle of virtual work for all elements becomes

k-I

(4)

with necessary and sufficient conditions on displacements and
slopes at element boundaries given as

_i,k (1) = if*+1 (0), _i,j, (1) =/SfiJk+s (0)

a,; _;÷_ 6,i'___k; 6,;';+1

(5)
¢%(0) =6¢%(0)=0

¢v't (0) = 6¢; _( 0 ) =0 (cantilevered caseonly)

and

S' S'rk =iki k r_kd_k +i _ ,'_k_kd_k+rk.j(O) (15)
_k _k

where ru(I)= 0. The quantities _k(rtk), _k(r/k), and rk(rtk)are

analytic functions and thus the displacement ",i,k is analytic
and can be expressed to any accuracy desired by a power series

in "_k, as illustrated in Ref. 17. Since we are interested in
developing this method in finite-element form, we will now
outline the computation of shape functions suitable for this

purpose.

Shape Functions

We first expand the displacement w (dropping the bar and k

temporarily for convenience) in terms of a complete set of
shifted Legendre polynomials

N+I

w= _a Aj_j(_)
j=l

(7)

where Oj(_) is the shifted Legendre polynomial of degree
(]- I) over the interval 0<_< 1. It should be noted that it is
imperative for fast convergence that all of the terms be taken,
not just half as in Refs. 8 and 9. When only half of the terms

are taken, for example the odd terms, an artificial constraint
is imposed on the displacement in that the coefficients of
even-powered terms in an equivalent power series are

predetermined, it would appear logical to take only the odd
Legendre polynomials because they are the exact solution to
the free vibration of a rotating string. The effect of bending

stiffness on the mode shape of a rotating beam, however,
cannot be ignored, especially for the cantilever root con-
dition. A better approach is to take all the polynomials and
use the boundary conditions to eliminate coefficients of the

lower degree terms as done in Ref. 17 with a simple power
series. When this is done, the results obtained are identical to

those obtained with a simple power series.

We now identify a set of points Yl in the interval 0<y I < I
such that

Yt =Y._ = 0

Yj =fl I

Y4 = _Z

(8)

YN-I --'-- _N-J

YN =Y_+ J = l

where the numbers _ are the roots of _N-:('q) = 0 (the Gauss-
Legendre points associated with the interval). Note that for

N= 3 there are no points n, for 0<r h < I. Our intent is to alter
the basis of expansion in Eq. (7) so that the coefficients
(generalized coordinates) will be w at the points
Y/,Yj,Y,s ..... YN and w' at the points yt and YN.I. Ob-
viously, for N= 3 this procedure will yield the standard beam

finite-element shape functions, n It is our objective here,
however, to allow for arbitrary choice of N> 3, thus enabling

us to obtain the essentially exact solution as N is increased
until convergence without refining the element geometry.

Now, let

N+I

w= _,t B,_j('#) (9)
j=t

where ¢7('/) are the new basis functions. Identification of the
generalized coordinates at the end of the interval yields

N+I N+I

Bl=w(O) = E Aj6+(O)= y Aj(-I) j+t
j=l J=J

N+I N+I

Bz=w'(O)= _._ a/bj(O)= _a A,i(-l)J(P-J)
j=l j=l

N+I N+I

j=l j=l

N+I N+I

j=t j=l

(10)

For the points in the interval,

N+ 1

B,+_=w(y,+.r)=w(_,)= _ A/%(rh); i=1,2 ..... N-3

(11)

A somewhat more convenient expression for programming
purposes results if we first multiply Eq. (11) by g,cb,.(_,) and

sum over i, where g, is the Gauss-Legendre weight for the
interval 0 < _ -_ 1.

N-3 N-3 N+I

E g,,,.<,,)B,.=
i=l i=l j=l

m=!,2 ..... N-3 (12)

We now reverse the order of summation on the right-hand
side and obtain

N-3 N+I N-3

i=l j=l i=l

(13)

The inner sum is simply an integral whenj is not too large

x-s I_ m=l,2 ..... N-3 (14)]_ g_(_l,)_,,,(n/) = _,_jdn, m+j<2N-5
i=l

It is evident that the summation yields the exact value of the
integral under certain conditions. Thus,

i 1

I_ _,.%d,_=0 ,

j=m

j¢m and j<2N-J-m

(15)



1462 D.H. HODGES AND M. J. RUTKOWSKI AIAA JOURNAL

When j< 2N- 5 - m, we simply evaluate the sum as it is. The relationship between the coefficients Aj and Bj can now be written in
matrix form as

where

it-q=

[C][a] = [DI lbl (16)

1 0 0 0

0 1/3 0 0

0 0 1/5 0

I -I I (-I) j+l (--I) N

0 2 -6 (-I)J(jz-j) (--I)NN(N+I)
1 --

0 0 0 0

0 0 0 0

1/(2j-1)

0 0 0 1/(2N- 7)]

1 1 1

0 2 6

0 0 0 0

0 0 0 SN_J,N÷ l

0 0 SN-2.N SN-2,N+ I

0 SN- I.N- I SN- t,N SN- I.N+ I

] I

jZ _j N(N+ 1)

[D] :

ill:x2

[0]2.;

[0]2x(N_j) [0]_x2

[&-2_i-2(,j-;)](N-,)×(N-J) [0](N-j)x2

[0];x(N-,) [l]_x2

(17)

(18)

and

[al=[A,A_... AN+t]r {b]=[BjBa...BN+/]r

N-J i=N-3,N-2,N-I (19)
Sit= E gmd_.-2(_,.)dPJ (_m)" j=N-I,N,N+!

m=l

[1] = identity matrix [0] = zero matrix

Thus, the value of ffj(T/) at any point TIin the interval can be
obtained through a simple automated process based on
evaluation of Legendre polynomials at the desired points and
a single calculation of the above matrices. The integrals
required in Eq. (4) can be evaluated by Gaussian quadrature.
If the element property functions "rk and rhk are polynomials
in r/, then Gaussian quadrature is exact. It should be noted

that the Gauss-Legendre points used for the quadrature are
not the same as those used for the interpolation since more

points are needed for accurate integration. If G is the

maximum degree of "rk, rhk, or r k, then the number of Gauss-
Legendre points N o required for exact integration is chosen
such that

N G > (G+ I)/2 (20)

The method of generating basis functions also applies to more

general problems. If-the problem being treated is non-
conservative, the same basis functions can be used. If it is

nonlinear, a set of nonlinear algebraic equations would result
from discretization of the appropriate principle of virtual

work and more Gauss-Legendre points would be needed for
evaluating the integrals, but again the same basis functions
can be used.

Dtscrelization of the Principle of Virtual Work

We now substitute the basis functions derived above into
the principle of virtual work to yield the following eigenvalue
problem:

M N÷I N+I Jl (Tktblld/#E EB,,
,=1 j=, i=1 o \_ .s.,

with

(21)

BN+I,k B2,k÷I

B_., =B1,k+1, _, - t,+l

6BN+ l,k --8Bz.k + I

8BN.k =SBl.,+,. _k - _k

At the root (element 1),

(22)

B n = 8BII = 0

B,_I = 8B21 = 0 (cantilevered root only)

(23)

Equation (21) can be expressed as

8br(K-#2M)b=O (24)

where b is now the column vector of all unknowns Bj, and the
row vector 8b r is 8B_,_. The eigenvalues _2 are unknown and

the element stiffness and mass matrices K and M are not yet
assembled. The global degrees of freedom _ are easily ob-
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Table I Dimensionless frequency/J as a function of dimensionless blade angular speed ), (cantilever root end, uniform, "rt= 0)

1463

Firstmode Secondmode Thirdmode

M=I,N=I5 M=I,N=I5 M=I,N=I5
M='5, N= 3 (exact) M= 5,N= 3 (exact) M= 5,N= 3 (exact)

0 3.5160628 3.5160153 22.045506 22.034492 61.918841 61.697214
I 3.6816930 3.6816468 22.191953 22.181011 62.062855 61.841763
2 4.1373710 4.1373196 22.625674 22.614922 62.492726 62.273184
3 4.7973618 4.7972786 23.330785 23.320264 63.202096 62.984967
4 5.5851651 5.5850015 24.283711 24.273349 64.180850 63.966760
5 6,4498603 6.4495447 25.456473 25.446080 65.415758 65.205041
6 7.3609370 7.3603730 26.819815 26.809082 66.891254 66,683914
7 8.3005734 8.2996369 28.345571 28.334083 68.590234 68.385951
8 9.2582998 9.2568376 30.008123 29.995382 70.494825 70.292962
9 10.227857 10.225686 31.785075 31,770514 72.587035 72.386681
I0 11.2054]9 II.202328 33.657367 33.640366 74.849290 74.649295
II 12.188587 12.184338 35.609067 35.588965 77.264817 77.063843
12 13.175820 13.170150 37.627003 37.603112 79.817915 79.614478

Table 2 Dimensionless frequency t, as a function of dimensionless blade angular speed _, (cantilever root end, uniform, i s = !)

First mode Second mode Third mode
M=I,N=I5 M=I,N=15 M=I,N=I5

h M = 5, N = 3 (exact) M = 5, N = 3 (exact) M = 5, N = 3 (exact)

0 3.5160628 3.5160153 22.045506 22.034492 61.918841 61.697214
I 3.8888709 3,8888236 22,385868 22.375014 62.263451 62.043053
2 4.8337806 4.8336888 23.376585 23.366042 63.284581 63.067548
3 6.0820144 6.0817497 24.938251 24.927745 64.946210 64.733802
4 7.4757038 7.4750478 26.968488 26.957262 67.194510 66.986772
5 8.9471790 8.9403581 29.365944 29.352835 69.964967 69.760710
6 10.446342 10.443866 32.043670 32.027244 73.189437 72.986335
7 11.973160 11.969071 34.932917 34.911582 76.801539 76.596449
8 13.513664 13.507389 37.981697 37.953793 80.740275 80.529532
9 15.063167 15.054077 41.151554 41.115408 84.951845 84.731533
I0 16.618936 16.606363 44.414262 44.368224 89.390169 89.156329
11 18.179293 18,162547 47.749093 47.691553 94.016592 93.765354
12 |9.743158 19.721542 51.140730 51.070134 98.799141 98.526797

tained from Eqs. (22) and (23) so that

b=Cb, 6br=_brc r (25)

where C is a matrix that accomplishes the operations in Eqs.
(22) and (23). Substitution of Eq. (25) into Eq. (24) yields

6brcr(K-_2M) CB=O (26)

Since 6b is purely arbitrary, the matrix eigenvalue problem is
now obtained

( g- #21f4) D=O (27)

where the global stiffness and matrices are given by

[(= CrKC, _I= CTMC (28)

For simplicity the assembly process is written as a matrix
operation in Eq. (28); however, the operations are best
programmed without matrix multiplication. Since the present
problem is conservative, both/_ and/f/are symmetric and
is positive definite. The Cholesky decomposition of M' into
LL r yields an eigenvalue problem involving a single sym-
metric matrix

# _lc= L -I [(L - rc (29)

in which #z is the eigenvalue and c=L rb. The eigenvalues of

L-If(L -r may be obtained and, if necessary, the eigen-
vectors may be obtained through appropriate transformation.
The eigenvalues and eigenvectors may be obtained to any
accuracy desired by choosing N sufficiently large, i_ Unlike

the method of Ref. 17, however, the matrices are now well

conditioned so that double precision arithmetic is un-
necessary. They are also written in a form convenient for
finite-element type programming. Unlike conventional finite-

element methods, however, the displacement at any point on
the beam can be calculated to sufficient accuracy to achieve a

smooth representation of the exact waveforms.

Results and Discussion

Tables 1-3 present dimensionless modal frequencies _ at a
range of dimensionless rotation speeds )_ of 0-12 for three
rotating cantilever beams: uniform, uniform with nonzero
hub radius (off-damping), and tapered. For the tapered
beam, a rectangular cross section was chosen where the beam
depth was assumed to be linear in the dimensionless beam
axial coordinate r. This choice resulted in a linear variation in
beam mass and a cubic variation in beam stiffness. In each
table results for the first three modes are tabulated for two
different solutions: an approximate solution based on a five-
dement model with a cubic polynomial-displacement function
(i.e., M= 5, N= 3) and an essentially exact solution based on a
single element but with a 15th-order shape function (i.e.,
M= I,N= I5).

The maximum percentage errors between the approximate
and the exact solutions in the three modes, respectively, were
0.43, 0.64, and 0.36 for the uniform case; 0.11,0.25, and 0.36
for the uniform with off-clamping case; and 0.013, 0.015, and

0.29 for the tapered case. It is also interesting to note the
perfect agreement between results shown in Tables 1 and 2

and those presented to six significant figures in Ref. 18.
Numerical results have also been obtained for the finite-

element solution of the nonuniform, discontinuous rotating
cantilever beam in Ref. 17. It should be noted that numerical
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Table 3 Dimensionless frequency e as a function of dimensionless blade angular speed _.(cantilever root end, tapered, ._ = 0)

First mode Second mode Third mode
M=I,N=I5 M=I,N=I5 M=I,N=I5

M= 5, N= 3 (exact) M= 5, N= 3 (exact) M= 5, Nffi 3 (exact)

0 3.8238530 3,8237849 18.325408 18.317261 47.403178 47.264827
i 3.9866770 3.9866177 18.481991 18.474006 47.554824 47.417284
2 4.4368408 4.4368017 18.944151 18.936627 48.006789 47.871619
3 5.0926865 5,0926669 19.690743 19.683900 48.750435 48.61901 l
4 5.8787721 5.8787617 20.691199 20.685158 49.772213 49.645637
5 6.7434176 6,7344986 21.910547 21.905325 51.054771 50.933807
6 7.6551936 7.6551392 23.313753 23.309272 52.578213 52.463260
7 8.5957062 8.5955770 24.868615 24.864719 54.321325 54.212420
8 9.5542170 9.5539580 26.547188 26.543658 56.262644 56.159489
9 10.524368 10.523905 28.326127 28.322692 58.381296 58.283293

10 11.502311 11,501549 30.186399 30.182744 60.657577 60.563880
I1 12.485652 12,484474 32.112711 32.108482 63.073320 62.982874

12 13.472865 13.471130 34.092865 34.087675 65.612065 65.523654

Taperedbeam parameters:_= I- (r/2);.y= [1- (r/2)]3.

Table 4 Dimensionless frequency _ for dimensionless blade angular speed X = 1
(cantilever root end, nonuniform, "rl = 1/19)

N M First mode Second mode Third mode Fourth mode

3 2 1.0691352 2.6354387 5.1431835 14.020328
4 2 1.0663536 2.5942263 5.1223762 9.4830925
5 2 1.0660366 2.5909878 4.7319910 8.8317222
6 2 1.0660098 2.5909405 4.7279302 7.7417328
7 2 1.0660084 2.5907631 4.7216555 7.7388390
8 2 1.0660084 2.5907040 4.7189516 7.6753688
9 2 1.0660084 2.5906958 4.7187634 7.6693676
10 2 1.0660084 2.5906957 4.7187630 7.6692997

Exact 1.0660084 2.5906956 4.7187589 7.6691747
3 5 1.0691310 2.5966530 4.7313324 7.7249582
3 10 1.0661534 2.5909765 4.7200226 7.6763372

Configuration of nonuniform rotating beam with discontinuities:

r rh 7

0.05 "¢:r _;0.2 I 0.00146(1 + "re) 4
0.2"_r < I 5[I- (r/2)] 0.0146(I+Xl ) _[I- (3r/2)+ (3r2/4)]

valuesof m, and El, arearbitrary.However, forthepurposes

of the present paper thesereferenceparameters have been
chosen togiveX = I.In Table 4 the dimensionlessfrequencies

for the firstfour modes are presentedatX = 1 forM= 2 with
N varying from 3 to 10.As N isincreasedthe solutionsare

seento converge verynicelyfrom above to theexactsolution
thatwas obtainedby takingM= 2 witha sufficientnumber of

terms (N= 15) to insureconvergence (M=5 and N= I0 will
also produce the exactsolution).In addition,Table 4 also

presents resultsbased on a cubic polynomial-displacement
functionfor both a five-and a ten-elementmodel. For M= 5

and N=3, the firstthree modes are in error by lessthan

0.30%, and eventhe fourthmode isinerrorby only0.73%.
In Tables 5 and 6 the displacement,slope,moment, and

shear are tabulatedfor the firstmode shape of the uniform

beam (X-l) and the nonuniform discontinuous beam,
respectively.Here the displacement is normalized for
deflection of unity at the tip. Results are presented for M-- 5
and N= 3 and M= I and N= 15 in Table 5 and for M= 5 and
N= 3 and M-- 2 and N= 15 in Table 6. It is interesting to note
that the moment and shear are discontinuous for the con-
ventional results (M= 5 and N= 3), as shown in Fig. 2. The
reason for this is that the cubic displacement field is not
general enough when differentiated to represent the actual
variations in these quantities. When N=3, the natural
boundary conditions on moment and shear at element
boundaries and at the beam tip are not satisfied. This is the
reason for the appearance of two numbers under the M= 5

and N= 3 column for certain values of r. These values of r are
at the element boundaries and there are thus two values of

shear and moment (as in Fig. 2) at these points. By simply
increasing N, however, the appropriate values of moment and
shear are approached and the results may be made as accurate

as desired. In fact, the residuals obtained by substitution of
the first mode shape into the differential equation are on the
order of 10-6 for the uniform beam with X--- 1 for M= 1 and

N= 15. Similar results are obtained for higher modes with
slightly less accuracy.

The excellent covergence obtained with the present variable-
order finite element is shown in Fig. 3, where the percentage
error in the first mode for the uniform rotating beam at X= 10

is plotted as a function of the number of degrees of freedom
Mx (N-1) considered in the analyses. The convergence for

one element (M= 1) and two elements (M= 2) when the order
N of the elements is increased is plotted along with the con-
vergence obtained with the third-order element (N= 3) when
the number of elements is increased. The figure clearly shows
that, for a given number of degrees of freedom, a single high-

order element is superior to several low-order elements.
Furthermore, the convergence displayed by the variable-order

finite element is seen to be considerably faster than that
obtained with the conventional finite element based on a cubic

polynomial-displacement function. Similar, although slightly

slower, convergence is also obtained for the higher modes.
This convergence is typical of that seen for the other rotating
beam cases as well as for beams with other end conditions.
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Table 5

FREE-VIBRATION ANALYSIS OF ROTATING BEAMS

Uniform cantilever beam displacement, slope, moment, and shear distributions for first mode, ',/= [

1465

dg, d_g , d d2@ dg,

d--; "rdr' -'d;_'_,' -'-'if,

M=5, M=I, M=5, M=I, M=5, M=I, M=5, M=I,
N=3 N= 15 N--3 N= 15 N=3 N- 15 N=3 N= 15

0.0 O.O0(g)O0 0.000000 0.00000 0.00000 3.57027 3.57602 -5.14507 -5.31785

0.I 0.016994 0.017001 0.33130 0.33130 3.05576 3.05289 -5.30906 -5.31007

0.2 0.064545 0.064545 0.61115 0.61115 2.54126 2.54713 -5.43842 -5.25797

2.53902 - 5.02693

0.3 O.i37567 0.137578 0.84139 0.84139 2.06566 2.06138 - 5.11641 - 5.12358

0.4 0.231245 0.2J 1245 1.02428 1.02428 1.59230 1.60137 - 5.16378 - 4.87569
1.58716 -4.47171

0.5 0.340935 0.340954 I.16279 I.16280 I.18300 i.17552 - 4.47756 - 4.48946

0.6 0.462456 0.462456 1.26089 i.26089 O.77885 0.79465 - 4.44500 - 3.94607

0.77156 - 3.28293

0.7 0.591922 0.591953 i.32364 i.32366 0.48362 0.47158 - 3.21698 - 3.23218

0.8 0.726225 0.726225 1.35761 1.35761 0.19567 0.22078 -3.12382 -2.33920

O.18701 - i.35962

0.9 0.862735 0.862779 1.37073 1.37075 0.07549 0.05804 - i.24547 - 1.26243

1.0 i.00000 I.O(g)(_ 1.37271 1.37271 0.03604 0.00000 - I.11525 0.00000

Table 6 Nonuniform discontinuous beam displacement, slope, moment, and shear distributions for first mode, y: ]

d_ d2g " d [ d_g,'_ dg,

g' dr 'Y dr"--7 d'--r_,'_ _ ,) - r d'-'Z

M=5, M=2, M=5, M=2, M=5, M:2, M=5, M=2,
r N=3 N= 15 N=3 N= 15 N=3 N= 15 N=3 N= 15

0.05 0.000000 0.000000 0.00000 0.00000 0.0282493 0.0499696 -0.24396 - 1.64836

0.I 0.020705 0.026481 0.75857 0.83889 0.0160511 0.0096621 - 1.44882 - 1.64779

O.2 O.123681 O.124995 1.02247 1.04676 - 0.0083453 0.0010054 - 1.85264 - 1.63936

- 0.0039192 - 1.62697

0.3 0.227581 0.230245 1.05368 1.05896 -0.0023128 0.0012433 - 1.55672 - 1.55135

0.4 0.334047 0.336841 1.07377 1.07296 -0.00110._4 0.0010515 - 1.42773 - 1.41875

- 0.0013018 - 1.42169

0.5 0.442236 0.444813 1.08957 1.08628 -0.0009224 0.0008113 - 1.25177 - 1.24695

0.6 0.55;870 0.554053 I.J0265 J.09828 -0.00063.38 0.0006082 -1.0463J - I.04152

-0.0006654 - 1.04618

0.7 0.662712 0.664417 1.11381 I.I0871 -0.0004635 0.00044i6 -0.81203 -0.808i5

0.8 0.774555 0.775726 1.12265 1.11704 - 0.0003140 0.0002829 -0.55513 -0.55273

- 0.0002974 - 0.55582

0.9 0.887116 0.887714 1.12790 1.12205 -0.0001212 0.0001096 -0.28263 -0.28128

1.0 1.00000 1.00000 1.12910 1.12315 -0.0000300 0.0000000 -0.00148 0.00000

6

M=5, N=3 .
5

4 M=I, N=15
r_

"'3

o_

2

1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Fig. 2 Shear force dislribulion for Ihe first mode shape of the
uniform cantilever beam, _ = 1.

The trend that clearly emerges is that, for a given number of

degrees of freedom Mx(N-I), the method yields more

accurate results when M is taken as small as possible and N is

chosen as large as necessary. This trend has been observed in

other similar approaches to finite-element modeling. 22

It should be emphasized that, although the examples

considered in the present paper have been limited to rotating

cantilever beams, the analysis method described herein is not

restricted to these problems. The method is equally applicable

to rotating and nonrotating beams with other end conditions

and is readily extendable to include nonlinear coupled bend-

ing, torsion, and extension with pretwist, transverse shear,

warp, etc. In fact, this analysis method can also be extended

to nonconservative problems. Bailey 23 has recently applied

Hamilton's law of varying action to Beck's follower-force

problem. With the present analysis method, equivalent to that

of Ref. 23, the exact solution for the critical load of Beck's

problem has been obtained to eight places with a single
element and N= 10.

Conclusion

A variable-order finite-element method has been presented

with application to the free vibration of rotating beams. The

excellent convergence properties obtainable with this method

have been demonstrated for several cantilever beam examples

which include hub offset, taper, and nonuniform, discon-

tinuous mass and stiffness properties. Where possible, the

published exact solutions are compared with the present

results and are found to be identical. In addition, comparison

has also been made with results obtained by using a con-

ventional finite element based on a cubic displacement

function. The results clearly indicate that, for a given level of

accuracy, as few elements as possible should be used and the

order of the elements should be large enough to yield the
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Fig. 3 Percentage error for fundamental frequency of a uniform

beam as a function of number of degrees of freedom Mx(N-1),
,_ = 10.

desired accuracy. Moreover, it has been found that with

respect to computation time, fewer higher-order elements are
better than more lower-order elements for the same level of

accuracy. Furthermore, although computer storage

requirements using the present method have not posed a

problem for the linear analyses carried out to date, this

question will, of course, have to be addressed for future

nonlinear analyses.

The variable-order finite-element method described in this

paper is currently being extended to incorporate coupled

bending, torsion, and extension with geometric nonlinearity

and nonconservative loading. Preliminary calculations for _

nonlinear and nonconservative problems indicate the same

accuracy, efficiency, and favorable convergence properties

exhibited for the present linear, conservative problem.
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